A Step-by-Step Guide to Prototyping and Deploying a Chatbot on AWS ECS Fargate

Have you ever wanted to add AI/ML features to your products, but felt intimidated by the technical barriers and high costs?

Look no further, because ChatGPT is here to change the game. With the help of OpenAI, ChatGPT allows you to easily prototype AI/ML solutions without deep knowledge or a big budget. It’s like the personal computer revolution, where everyone suddenly had access to their own machine instead of having to rely on expensive mainframes.

Now, anyone can have their own personal AI to enhance their products.

Fast Prototyping and Customer Feedback

Time is of the essence in the world of product development. The faster you can get feedback from customers, the faster you can improve and succeed. This is where fast prototyping comes in — by quickly creating a prototype, you can gather customer feedback and make the necessary adjustments before fully committing to a solution. ChatGPT makes it easy to prototype AI/ML solutions, allowing you to get customer feedback faster and improve your chances of success.

The Cloud Revolution

The rise of the cloud has been a game changer for startups and product development. The cloud provides an on-demand cost model, managed services, and serverless options, making it easy to scale and deploy solutions without the upfront infrastructure costs. AWS is a leader in the cloud market and by using their services, you can easily prototype and deploy your AI/ML solutions.

A Chatbot Prototyped with Streamlit and Deployed to AWS ECS Fargate

Streamlit is a powerful tool for prototyping AI/ML solutions and when combined with the managed services of AWS, it becomes even more powerful.

By using CloudFormation, you can easily deploy your chatbot to AWS ECS Fargate, which is a fully managed container service. Amazon Polly and Amazon ECS can then be used to add voice and container capabilities to your chatbot. The end result is a fully functional chatbot that can be easily integrated into your products and services.

We’ve discussed the benefits of using ChatGPT, fast prototyping, and the cloud to extend your products with AI/ML features. We’ve also provided a detailed guide on how to deploy a chatbot prototyped with Streamlit and deployed to AWS ECS Fargate using CloudFormation, Docker, and AWS ECS.

With these tools, you can easily prototype and deploy AI/ML solutions to enhance your products and services. Don’t let technical barriers hold you back any longer — take advantage of the power of ChatGPT and the cloud to bring your products to the next level.

My code can be found in this GitHub repo.

Run Docker Container Locally

To build the Docker image for this project, use the Dockerfile in the ./app directory. You can do this using the docker build command.

For example, to build the image using the Dockerfile in the current directory, you can use the following command:

docker build -t chatgpt-streamlit .

This will build the image and tag it with the name chatgpt-streamlit.

To run the Docker container locally, you will need to have Docker installed on your machine. You can then use the docker run command to start the container.

Here is an example of how to run the container locally:

docker run -p 8501:8501 -e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \

-e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \

-e AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN \

-e AWS_DEFAULT_REGION=”us-east-1″ \

chatgpt-streamlit

This will start the container and bind the container’s port 8501 to the host’s port 8501. You will also need to set the appropriate AWS access keys and session token as environment variables. The container will use the us-east-1 region as the default region.

Once the container is running, you can access the Streamlit application by visiting http://localhost:8501 in your web browser.

CloudFormation Stack Deployment

This CloudFormation template creates a Virtual Private Cloud (VPC) with four subnets (two public and two private), an Internet Gateway, and a NAT Gateway. The template also creates four route tables (one for each subnet) and routes for each route table to direct traffic to the Internet Gateway or NAT Gateway as appropriate.

The VPC has a CIDR block of 10.0.0.0/16, and the four subnets are created with CIDR blocks of 10.0.1.0/24, 10.0.2.0/24, 10.0.3.0/24, and 10.0.4.0/24. The public subnets are mapped to have public IP addresses on launch, whereas the private subnets are not.

There are also a few parameters defined at the beginning of the template that allow the user to specify an allowed IP address range for accessing port 80 on the load balancer, the name of an Elastic Container Registry (ECR) repository, and the path to an API key in the SSM Parameter Store.

To deploy the CloudFormation stack for this project, use the ./cf.yaml file. You can do this using the AWS Management Console, the AWS CLI, or the AWS SDKs.

For example, to deploy the stack using the AWS CLI, you can use the following command with default values:

aws cloudformation create-stack \

–stack-name chatgpt-streamlit \

–template-body file://cf.yaml \

–capabilities CAPABILITY_IAM

For example, to deploy the stack using the AWS CLI, you can use the following command with custom values:

aws cloudformation create-stack –stack-name chatgpt-streamlit \

–template-body file://cf.yaml \

–parameters ParameterKey=AllowedIP,ParameterValue=1.2.3.4/32 ParameterKey=Repository,ParameterValue=public.ecr.aws/a9t7y4w6/demo-chatgpt-streamlit:latest ParameterKey=ChatGptApiKeyPath,ParameterValue=/openai/api_key

This will create a new stack called chatgpt-streamlit using the cf.yaml template file and the CAPABILITY_IAM capability.

To Wrap Everything Up

ChatGPT, fast prototyping, and the cloud are game changers for those looking to extend their products with AI/ML features.

By using ChatGPT, you can easily prototype solutions and gather customer feedback. The cloud, specifically AWS, provides managed services and an on-demand cost model that make it easy to deploy and scale your solutions. Streamlit and AWS ECS Fargate allow you to easily create a chatbot that can be integrated into your products and services.

Don’t let technical barriers and high costs hold you back any longer — embrace the power of ChatGPT and the cloud to enhance your products with AI/ML features.

Neurons Lab is here to help you with your chatbot creation endeavors.

Drop us a line for a consultation

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Neurons Lab

We are a group of scientists, engineers, and developers who are passionate to revolutionize the future of businesses with AI and machine learning technologies.